Tag Archives: NASA

Mass versus Weight: A unique STEM approach

I regularly incorporate NASA activities into my physical science curriculum.  In this post, I cover how I introduced a NASA lesson on  Mass vs. Weight into my classroom.  This particular lesson can be found on the NASA education page.  While this post will focus on physical science, the lesson could be easily incorporated into other disciplines.

Students commonly misuse the terms “mass” and “weight”.   The principal objective of the lesson is for students to properly define and explain the difference between the two concepts.

KEY CONCEPT: Mass is the amount of matter in an object and weight is a force due to the gravitational pull on an object.  Mass is constant despite exposure to gravity, while weight is a measurement of force upon an object based on gravitational pull.  This difference is often difficult for students to grasp because they have a singular experience–gravity on planet Earth.

The activity, Mass versus Weight (on the NASA website), explores the concepts of mass, weight, forces, Newton’s Laws, gravity  and micro-gravity across four lessons.

In the first lesson plan, students are introduced to three astronauts through reading exercises and video and provided and overview of concept.  My students felt connected to the astronauts and enjoyed watching the videos that explained the experiments on the International Space Station (ISS) and how the micro-gravity changed the behavior of the activity.

The first activity, Stretching Mass, required students to record mass and volume and observe the gravitational pull on a full versus empty Capri-Sun juice pouch. Predictions were made regarding the result of the same test conducted in  a micro-gravity environment.  Following their predictions, students watched videos shot on the ISS in which the astronauts carried out the same experiment.   The students enjoyed seeing the changes and verifying their predictions.IMG_7605video of astonaut 2
In this picture, Nicole Passonno Stott (NASA astronaut) performs the same experiment with Capri-Sun juice pouches in space.

In the second activity, Air-Powered Mass,  students created paper containers to hold pennies (change in mass).  A series of straws were placed horizontally in a line below the box to create a roller belt.  A balloon pump was used to force burst of air against the container and propel is over the straw rollers. The experiment was repeated with additional pennies (increase in mass) added between each set.  Students recorded the mass and distance traveled during each set.  Instructor-led presentations covered mass, momentum, Newton’s laws of motion and forces using the experiment as  a case study.IMG_7610
TIP:  Keep the type of air pump consistent for each group.  I used two different air pumps and one didn’t push air out as consistently as the other.FullSizeRender
Students were prompted to make predictions how this same activity would work in a micro-gravity environment, then watched video of two astronauts preforming the experiment.
video of astronaut pictures
Here Robert Brent Thirsk and Koichi Wakata perform the experiment with a large air gun.  Students observed that the air pushed on the container the same way.  Due to a lesser gravitational pull, the object stayed in motion and did not stop.

The series continues with a lesson on Accelerating Mass and an activity,  Designing Your Own Experiment.   I was unable to fit this lesson in due to time constraints.  I did not find the omission of this lesson as a detriment.  My students demonstrated an understanding of the concepts, mass versus weight, and had an early introduction to Newton’s laws and forces.

Stay tuned for my next post on how I incorporated NASA’s Environmental Control and Life Support System (ECLSS) engineering design challenge activity into my curriculum at the end of my elements/compounds/mixtures chapter.  My students loved it so much they wanted to do it again!!



Day 4 Log: Honeywell Educators @ Space Academy


Day 4: Log

Another incredible day!  We started with an activity that I really want to use in my own classroom.  It is called the Thermal Design Challenge.  Our task was to explore how heat is transferred, examine how NASA’s previous Thermal Protection Systems protected spacecraft and build an ablative shield to protect our “egg-stronaut” from the heat of a mock “re-entry”.  The idea behind an ablative shield is that the outer surface turns white hot, chars, and flakes away taking the heat with it.  The challenge involved protecting an egg from white-hot temperatures.  Each team needed to stay below the 100 credit max.  Each type of material (ex: cotton balls, large steel, pasta, spackle, cork, aluminum foil, paper) was priced out.  We needed to brainstorm, draw a design, and keep the model no wider than a pencil.  Here is a picture of our set-up. You will have to watch the video to see if it worked!
IMG_5604 IMG_5607

What I really liked about this activity was that even though our shield was an epic fail, I wanted to do it again; I wanted to improve our design. I think students may have a similar mindset and if I can allow enough time in my schedule, I would let them try again. What an amazing activity that shows true engineering at work!

After that competitive activity, we jumped right into our second mission of the week.  This time we were headed to moon in the year 2055.  A Shackleton control center as well as the Rising Star research station were habitable but the research station Aurora was in need of repair (broken windows and fire with the circuitry).  Six members of team Harmony were in the Operations control center, two members piloted the Orion spacecraft that was orbiting the moon, four took the spacecraft, Altair, to the moon’s surface to relieve the two astronauts in the Rising Star research station.  Those two astronauts could switch places and head back to the orbiting Orion via Altair.  Complicated, I know.IMG_5623

I had a different job this time compared to our first mission.  This time I was a lunar specialist in the Rising Star station. This was a lot of fun.  IMG_5626



I started the mission by performing some pre-EVA medical evaluations like real astronauts do before their EVA’s (Extra Vehicular Activity or “space walk”).  I needed to take my temperature, pulse and blood pressure before I got suited up.


After our pre-assessment, we ventured outside Rising Star to check oxygen and nitrogen tanks.  If they were too low, we needed to change them by unscrewing the hoses from the tanks and replacing them.  We also needed to check the batteries and wires, and replaced where needed.  Last, we needed to obtain a USB from a rover that was taking pictures along the surface.


Replacing O2 andN2 tanks



Checking batteries and wiring for possible damage.

IMG_5652 IMG_5653






Our last task, before Orion brought the new team in, was to build a solar panel system.  This was so awesome.  We were hooked up to a ballast that filled with water to counteract our weight.  One little push and I was sailing towards the top of the tower.  Unfortunately, I did not get video but you can imagine from the pictures.


Notice the “solar panals” on the bottom left that I already assembled.

IMG_5666 IMG_5668

A swap out with the new crew, led us to Altair and off of the moon to the orbiting Orion. This activity, again, was heavy on the teamwork.  The relief crew was late so when we boarded the Altair capsule, we were behind on the clock.  I panicked a little because we lost our ability to connect with Orion, but it worked out in the end.  Again, a strong reminder that it takes a team to make any of these missions happen.


Team Harmony at the end of the second mission.

After lunch we ventured to another activity called “X-Prize”. The “real” Google Lunar X-Prize was started in 2007.  The first privately-funded team to send a robot to the moon wins $20,000,000!  In order to win, the team must: successfully launch, land on the moon, rove 500 meters, and then transmit back images and video.  WE DIDN’T DO THIS COMPETITION!

Ours was titled, Payload Operations L.U.N.A.R. (Landing Unique Navigable, Astronaut-Driven Rovers).  Our objective was the get our payload (which was our “egg-stronaut”) to land as close as possible to a target from high up without damaging the rovers function and then travel down a ramp to mimic driving on the planet.  A credit limit of 100 credits was set.  Chosen materials were categorized based on how many credits they were assigned. IMG_5687 IMG_5688



Rover construction


Lander construction

Team Harmony blew everyone else out of the water in this activity. We were on cloud 9!!

The last activity I will discuss happened on Day 5 but I am going to leave that blog post to graduation and reflections!

The final activity was called ECLSS (Environmental Control and Life Support Systems). The task was to mimic what happens aboard the ISS. Water and Oxygen need to be pumped back into the system, while CO2 and other waste products need to get pulled out.ECLSS

Our task was to take (what looked like) urine and create a filtration system to obtain pure water that was drinkable. It needed to end with a pH of 7, be low on conductivity and be an efficient system meaning it needed to reclaim a lot of that liquid in milliliters! As usual, this activity had a credit budget and items (such as ammonium chips, lima beans, empty water bottle, plastic funnel, charcoal, cheesecloth, coffee filter, sand, gravel) were assigned a certain amount of credits. To take it even further, you could add a clarity scale. Here are some pictures of set up and a video of a good filtration system, and then I will discuss ours.IMG_5733




This activity was a great learning experience and I definitely want to do this in my classroom for a mixtures unit. Not having a good experience (by the way our “urine” turned black because we messed up and dumped some charcoal into our sample, don’t ask!) was ok. We learned from our mistakes and wanted to do it again, something I hope my students would say to. Understanding this environmental system helps students see that it’s pretty dangerous on the ISS and if anything goes wrong, it could lead to death.

Stay tuned for my final reflection on Day 5!  We graduated and I will be taking so much home from this program!

Thanks for reading,


Day 3 Log: Honeywell Educators @ Space Academy


Flight crew for Atlantis

Day 3: Log

What an exciting day!  Lots of simulations, starting with our mission.  Our goal was to relieve the duties of the astronauts aboard the International Space Station (ISS).  Four members of Team Harmony were aboard the orbiter (Atlantis), four were in the ISS and the remaining six were mission control.

There were many things going on in my mind; don’t blow up the ship by pressing the wrong button, don’t leave your crew behind in space, don’t crash while you’re landing.  All of this aside, my main thought was that it takes a team to do this.  Mission control was our lifeline in the orbiter.  When they didn’t respond to our call outs, we felt isolated.  We had multiple anomalies thrown at us and needed to communicate that information to mission control, they would then figure out a solution and tell us how to stop the problem.  We worked well under the pressure and completed the mission successfully! (Perfect landing too!)  The simulation made us stronger as a team.  What a unique experience!  If I do have an opportunity to bring students in the future, I know that this will be a highlight for them and solidify their team.


Flight crew for Atlantis (minus one, we left her on the ISS )


Team Harmony Members


Team Harmony Members

Soon after our simulator, we went to rocketry 101.  Building rockets as a class project uses all three learning styles, visual, auditory and tactile.  It is a great activity to focus on teamwork, basic engineering skills and to promote an interest in space exploration.  You can find applications to rocketry in history, science, technology, math and art.  IMG_5714[1]

I currently build rockets as an activity at the end of the year.  I do not provide my students with a whole lot of guidance and expect them to read the directions and work with a partner stressing communication and responsibility.  After attending this class at the space academy, I plan to re-vamp my whole set-up.  It is important for kids to feel ownership of their rocket.  If you can afford it, one rocket per student would be ideal.  If not, two students to a rocket is good; that is how I organize the project in my class.  Provide your students with 1-2 hours to work on it (this includes gluing and spray painting).  Set up a hot glue station and provide supplies like Elmer’s Glue on their desk.  I liked how the space academy instructors used shish-kabob skewers to provide a vertical post to slide your rocket down so it stands up in the grass and you can spray paint it.  They also used the instructions from the bags as a protector for the grass.


Working on the rockets

IMG_5546[1] IMG_5547[1]

On launch day, the space academy is fortunate to team up with the Estes Company and create a multi-rocket launch system (including a large wooden wall with windows to shield the students).  Most teachers do not have access to this kind of set-up and would most likely do what I do, which is to have all students where googles and stand back.  The electric circuit launcher that I have with my smaller Estes rockets has the system designed so the student stands a safe distance back.  See video for a visual of the launch at the space academy!  

In the late afternoon, before dinner, we had a presentation on commercial and international space flight.  What was very interesting about this discussion was the fact that there are a number of rockets being launched all of the time! Check out this link for the 2015 launch schedule:  http://www.nasa.gov/launchschedule/

The following pdf will help give you an insight on what happened LAST WEEK aboard the ISS.  Notice the landing dates.  If you read my log from day 1, you will notice that we had the opportunity to watch the live footage of the Soyuz TMA-15M landing back on Earth.  Samantha Cristoforetti was the astronaut on board that broke the record for the most number of days in space for a female.   np-2015-03-011-jsc-expedition-43-summary  Exciting things are currently happening in the realm of space exploration.  Here is a quick list of what I picked up on in the presentation but you can guarantee that I will touch on a lot more in my classes the following school year.

-The Rosetta comet landing happened in late 2014 through efforts from the European Space Agency (ESA).  After a decade of orbiting the galaxy the probe, Philae, finally made contact with the comet and now has plans to stay with it for a year tracking data on the make-up and geological history.  Click here for more details.

Asteroid Redirect Mission: This is exactly as it sounds.  NASA would like to capture and drag and asteroid into the moon’s orbit to use it for research, planetary defense against other asteroids and as a location as a half-way point for deep space exploration.

-3D printing has come to the ISS.  This really caught my attention because of the work I am doing in my own classroom.  Astronauts are now printing tools and other supplies that they may need aboard the ISS reducing critical payload weight for the launches. Click here for more details.

-MARS or BUST.  If you haven’t heard, we are going to Mars!  Humans not yet, but it will happen in our lifetime.  Click here for an awesome NASA website that explains our current rovers on Mars.   This link explains how NASA and ESA have signed agreements to continue the exploration to eventually get humans to Mars.

-The New Horizons program is going to be BIG very soon.  This rocket was launched 8.5 years ago and is scheduled to fly by Pluto very soon.  In fact, it will pass the dwarf planet on July 14, 2015 at 7:49:56 am EST.  The fact that they know this is mind-boggling.  Click here for more details on this incredible mission.  This spacecraft will take pictures of Pluto’s atmospheric and surface composition.  This link will show you what the spacecraft looks like.  What I thought was interesting was that students designed a piece of the spacecraft that analyzes the space dust it encounters.  A very cool “plug-in” is that one of our very own alumnae of Cranbrook, Dr. Kathy Olkin, is involved in this project.  I plan on reaching out to her in the fall to Skype with us.  She did visit our school 2 years ago but now she will have even more amazing findings to show.

-The James Webb Telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.  (http://jwst.nasa.gov/about.html)

A couple of other things I jotted down in my notes from this discussion:

16 countries are associated with the ISS.

400 people have been to space.

Space Launch System (SLS) is the next vehicle to Mars.

NASA has selected two companies (Boeing and Space X) to focus on low orbit work (like the ISS).  NASA’s focus is now into deep space and Mars.

To end the night, (and this blog post) Team Harmony participated in two astronaut training simulators; the multi-access trainer and the 1/6 gravity moon simulator.  Note: the multi-access trainer does not make you get nauseous because your stomach stays in place and you do not rotate more than twice in a certain direction.

Thanks for reading!  Stay tuned for Day 4 Log.  More simulators and cool activities for the classroom!